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ABSTRACT

This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various
in vitro and in vivo models. Low-intensity light therapy, commonly referred to as “photobiomodulation,” uses
light in the far-red to near-infrared region of the spectrum (630–1000 nm) and modulates numerous cellular
functions. Positive effects of NIR–light-emitting diode (LED) light treatment include acceleration of wound
healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic
nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of
mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were
performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIR-
LED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metab-
olism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine
diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat mod-
els, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light
treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The ex-
perimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism
in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, thera-
peutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction.
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INTRODUCTION

LOW-INTENSITY LIGHT THERAPY, commonly referred to as
“photobiomodulation,” by light in the far-red to near-

infrared (NIR) region of the spectrum (630–1000 nm) modu-
lates numerous cellular functions. Clinical and experimental
applications of photobiomodulation have expanded over the
past 30 years.1 Low-power lasers and light-emitting diodes
(LED) are well-accepted therapeutic tools in the treatment of
infected, ischemic, and hypoxic wounds, along with other soft
tissue injuries.2–5 Positive effects of photobiomodulation in-
clude acceleration of wound healing, improved recovery from
ischemic injury in the heart, and attenuated degeneration in the
injured optic nerve.4,6,7

At the cellular level, photobiomodulation can modulate fi-
broblast proliferation, attachment and synthesis of collagen
and procollagen, promote angiogenesis, and stimulate macro-
phages and lymphocytes by improving energy metabolism
within the mitochondria. In addition, photobiomodulation has
demonstrated the ability to promote the production of growth
factors, such as keratinocyte growth factor (KGF), transform-
ing growth factor (TGF), and platelet-derived growth factor
(PDGF).5,8–10

Optimal wavelengths and energy densities necessary for
therapeutic interventions have been characterized. Wave-
lengths within the far-red to near-infrared range (630–1000
nm) along with a minimal energy density of 4 J/cm2 have been
proven effective at stimulating biological processes.4,10–13

Lasers are limited in their ability to deliver monochromatic
far-red to -NIR light. Combined wavelengths cannot easily be
reproduced with lasers, and the beam width makes it difficult
to treat large areas. Moreover, lasers emit a fair amount of heat,
which has the potential to produce tissue damage. An effective
alternative to lasers are LED arrays, which were initially de-
veloped by NASA for experimental plant growth in space.
LED arrays produce light in the far-red to NIR at optimal
wavelengths and energy densities. The arrays can be con-
structed in various sizes to accommodate large areas and do not
emit any heat, which eliminates the danger of additional tissue
damage. Light emitted by LED arrays at optimal wavelengths
penetrates skin and tissue to a depth of approximately 23
cm.4,12–14 Further, NIR-LED light therapy has been deemed a
nonsignificant risk by the FDA and has been approved for use
in humans.

NIR-LED PHOTOBIOMODULATION
STIMULATES THE PHOTOACCEPTOR

CYTOCHROME C OXIDASE

The mechanism by which far-red to NIR light produces its
biological effects remains to be elucidated. There is a growing
body of evidence that suggests that one primary effect is the
stimulation of mitochondrial cytochromes, which in turn initi-
ate secondary cell-signaling pathways.1,11,16–18 The overall re-
sult of photobiomodulation is increased energy metabolism
and improved cell viability.18

Within mammalian tissues, there are three major photoac-
ceptor molecules: hemoglobin, myoglobin, and cytochrome c

oxidase.18 Of these three, cytochrome c oxidase is the only one
that is involved in energy metabolism and production, as it
comprises complex IV of the electron transport chain located
within the mitochondria. Thus, cytochrome c oxidase has been
postulated as the photoacceptor molecule for the biological ef-
fects of photobiomodulation.

The evidence to support cytochrome c oxidase as the pri-
mary photoacceptor has been steadily growing. Cellular prolif-
eration studies comparing the action spectrum following laser
irradiation compared to the absorption spectra of possible pho-
toacceptor molecules have suggested cytochrome c oxidase as
the primary photoacceptor.16 In addition, it has been demon-
strated that up to 50% of NIR light is absorbed by mitochon-
drial chromophores, including cytochrome c oxidase.12,13 In
studies using primary cultured neurons and tetrodotoxin
(TTX)—a voltage-dependent sodium channel blocker that im-
pedes neuronal impulses, decreases ATP demand, and down-
regulates cytochrome c oxidase—NIR-LED light treatment has
been shown to reverse the toxic effects of TTX. This is accom-
plished by reverting levels of cytochrome c oxidase back to
control levels in TTX-exposed NIR-LED light–treated neurons
and up-regulating the enzyme’s activity in NIR-LED
light–treated control neurons.17 Furthermore, the action and
absorption spectra in the far-red to NIR wavelengths, com-
pared to the action and absorption spectra of cytochrome c oxi-
dase activity and ATP content in neurons exposed to TTX that
received NIR-LED light treatment, parallel each other18 (Fig.
1). NIR-LED light treatment has also partially restored cy-
tochrome c oxidase activity in primary cultured neurons ex-
posed to 10–100 µM potassium cyanide (KCN), significantly
reduced cell death in neurons exposed to 300 µM KCN, signif-
icantly restored ATP levels in neurons treated with 10 µM
KCN, and enhanced the effect of photobiomodulation by pre-
treating neurons with NIR-LED light prior to exposure to
10–100 µM KCN in vitro.

NIR-LED PHOTOBIOMODULATION
ACCELERATES WOUND HEALING 

IN VITRO AND IN VIVO

There is a growing need for safe and efficacious therapeutic
intervention for the treatment of chronic wounds. Hyperbaric
oxygen therapy (HBO) is a common treatment for ischemic,
hypoxic, and infected wounds, but it is not appropriate for all
patients.4 HBO therapy is contraindicated in patients who have
chronic medical conditions and are claustrophobic. Access to a
facility equipped with HBO may also be a problem.4 NIR-LED
photobiomodulation can serve as an alternative to HBO.

The process of wound healing occurs in three phases: first, a
substrate is laid down; second, cell proliferation occurs; and
third, remodeling of the tissue takes place. Photobiomodula-
tion exerts its biological effect during the proliferative phase of
wound healing. In vitro experimentation utilizing NIR-LED
light treatments at various wavelengths has shown to signifi-
cantly increase cell growth in a variety of cell lines, including
murine fibroblasts, rat osteoblasts, rat skeletal muscle cells,
and normal human epithelial cells.4 Accelerated wound healing
following photobiomodulation has also been demonstrated in a
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number of in vivo models, including toads, mice, rats, guinea
pigs, and swine.19,20 In an in vivo rat model of ischemic
wounds, a decrease in wound size and acceleration of wound
closure has been demonstrated in rats treated with 880-nm
NIR-LED light.4 Human studies using NIR-LED light therapy
have demonstrated greater amounts of epithelialization for
wound closure and accelerated healing of skin grafts.2,21

To determine if NIR-LED light treatment can improve im-
paired healing, we used a murine model of diabetic healing,
which is characterized by a delayed re-epithelialization.22

Polyvinyl acetal (PVA) sponges were implanted subcuta-
neously in the dorsum of genetically diabetic mice (BKS.Cg-m
+/+ Leprdb). The mice were subsequently treated with 670-nm
NIR-LED light, and wounds were harvested for RNA analysis.

Microarray analysis revealed that basement membrane and
tissue regenerating genes were significantly up-regulated in
mice that received NIR-LED light treatments as compared to
controls. Integrins, nidogens, laminin, actin, and kinesin motor
proteins were up-regulated. All of these proteins are necessary
at specific time points for wound-induced epithelial cell migra-
tion and differentiation.22 Up-regulation of these genes is one
possible mechanism by which NIR-LED photobiomodulation
can accelerate wound closure. Semaphorins/collapsins are an-
other group of genes that were significantly up-regulated in
mice receiving NIR-LED light treatments. Specifically, murine
semaphorin H is involved in the inhibition of sensory periph-
eral nerve ingrowth. Murine semaphorin H, along with other
semaphorin/collapsin proteins, is involved in pain manage-
ment. Pain has been shown to slow the healing process by the

recruitment of inflammatory cells to the site of injury.22 De-
creasing pain via NIR-LED light could aid in the acceleration
of wound closure.

Genes that were down-regulated in NIR-LED light–treated
mice include cytokine receptors, interleukin-1, interleukin-10,
and macrophage inflammatory protein–2. A decrease in these
genes encoding for proteins associated with the inflammatory
response results in a decrease in pain, which in turn increases
the ability of tissue-regenerating proteins to facilitate wound
closure. Another group of genes that were down-regulated in re-
sponse to NIR-LED light treatment were those encoding
proapototic proteins. Activator of apoptosis harakiri (HRK),
programmed cell death 1 protein precursor (PDCD-1; PD-1),
and receptor-interacting protein (RIP) were all down-regulated.

NIR-LED PHOTOBIOMODULATION AS 
AN EFFECTIVE THERAPEUTIC TOOL

FOR THE PREVENTION OF ORAL
MUCOSITIS IN PEDIATRIC BONE 

MARROW TRANSPLANT PATIENTS

Chemotherapy and/or radiation therapy is administered prior
to bone marrow transplant (BMT). Mucositis, especially oral
mucositis (OM), is a common debilitating side effect of this
treatment. The development of these ulcerations causes severe
pain, compromises the ability of the patient to eat and drink
independently, and can lead to infection and to increased mor-
bidity.23–25 Since NIR-LED photobiomodulation accelerates
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FIG. 1. Action and absorption spectra in the far-red to near-infrared (NIR) region of the spectrum for cytochrome c oxidase as
compared to the relative cytochrome c oxidase activity and ATP content in tetrodotoxin (TTX)–exposed neurons treated with
NIR–light-emitting diode (LED) light at varying wavelengths expressed as percent of controls.
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wound healing and increases cell proliferation, this treatment
was used in an attempt to treat pediatric BMT patients prophy-
lactically to prevent the development of oral mucositis.26

The first clinical trial of NIR-LED light treatment as a pre-
ventative treatment for the development of OM was performed
at the Children’s Hospital of Wisconsin in Milwaukee, Wiscon-
sin. Thirty-two pediatric patients receiving myeloablative ther-
apy were treated with 670-nm NIR-LED light once a day for
14 days post-BMT at an energy density of 4 J/cm2. Patients re-
ceived NIR-LED light treatment on the left extraoral epithe-
lium and sham treatment on the right. Subsequent to the light
treatment, patients were asked to rate left and right buccal pain
as compared to throat pain, which served as an untreated con-
trol. NIR-LED light treatment produced a significant reduction
in left and right buccal pain (48% and 39%, respectively) when
compared to throat pain. In addition, the incidence of OM in
this patient population was decreased, with only 53% of pa-
tients developing OM, when compared to historical epidemio-
logical data, which suggests that 70–90% of the patient
population receiving BMT should have developed OM
(Fig. 2). The results of this clinical trial demonstrate that NIR-
LED light treatment may be an effective preventive counter-
measure to the development of OM in cancer patients. This
study served as the foundation for the current multi-centered,
double-blinded trial underway.

NIR-LED PHOTOBIOMODULATION 
AS TREATMENT FOR RETINAL

TOXICITY IN VIVO

Mitochondrial dysfunction plays a central role in the patho-
genesis of numerous retinal and neurodegenerative diseases, in-
cluding age-related macular degeneration, Leber’s hereditary
optic neuropathy, and Parkinson’s and Alzheimer’s disease.27

Furthermore, mitochondrial dysfunction has been shown to play
an integral role in the development of retinal toxicity resulting
from methanol intoxication.28,29 The neurotoxic agent in
methanol intoxication is the metabolite formic acid. Formic acid
is a mitochondrial toxin that specifically inhibits cytochrome c
oxidase in the retina and optic nerve, resulting in blindness.30,31

To determine if exposure to monochromatic far-red to NIR
light from LED arrays protects the retina against the toxic ac-

tions of methanol-derived formic acid, we employed a rat
model of methanol toxicity.32 Results from these studies dem-
onstrate that three brief 670-nm NIR-LED light treatments of
2 min and 24 sec delivered at 5, 25, and 50 h of methanol in-
toxication significantly attenuated the retinotoxic effects of
methanol-derived formate during intoxication (Fig. 3). In addi-
tion, NIR-LED light treatment protected the retina from the
histopathologic changes induced by methanol-derived formate
(Figs. 4 and 5). These findings provide a link between the ac-
tions of monochromatic far-red to NIR light on mitochondrial
oxidative metabolism in vitro and retinoprotection in vivo.
Moreover, they have provided the impetus for ongoing investi-
gations of the therapeutic efficacy of far-red to NIR light ther-
apy in other models of retinal disease.

FIG. 2. Reduced incidence of oral mucositis in patients that
received 670-nm near-infrared–light-emitting diode (NIR-
LED) light treatments once daily for 14 days post–bone
marrow transplant (BMT) as compared to historical epidemio-
logical data.

FIG. 3. (a) 670-nm near-infrared–light-emitting diode (NIR-
LED) light treatment increases rod and M-cone ERG ampli-
tude in LED-treated methanol-intoxicated rats as compared to
methanol-intoxicated rats. (b) 670-nm near-infrared–light-
emitting diode (NIR-LED) light treatment improves retinal
function by increasing ultraviolet (UV)–cone ERG amplitude
in LED-treated methanol-intoxicated rats as compared to
methanol-intoxicated rats.

b

a
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The prolonged effect of three brief NIR-LED light treat-
ments in mediating the retinoprotective actions in methanol in-
toxication suggests that 670-nm NIR-LED light treatment
induces a cascade of signaling events, which is initiated by the
initial absorption of light by cytochrome c oxidase. These sig-
naling events may include the activation of immediate early
genes, transcription factors, cytochrome oxidase subunit gene
expression, and a host of other pathways related to increased
oxidative metabolism. Preliminary gene expression studies
in control untreated, methanol intoxicated, and NIR-LED
light–treated methanol-intoxicated rodents were performed. At

least 80 genes are involved in subsequent biological processes
resulting from methanol intoxication and NIR-LED light treat-
ment. Of these, at least 26 genes are up-regulated in methanol-
intoxicated rats. These same genes are down-regulated in
NIR-LED light–treated methanol intoxicated rats, as compared
to methanol-intoxicated rats. NIR-LED light regulates the ex-
pression of a number of genes that control important cellular
functions and include DNA repair proteins, antioxidant en-
zymes, molecular chaperones, protein biosynthesis enzymes,
trafficking and degradation proteins, along with cell growth
and maintenance proteins.

FIG. 4. Near-infrared–light-emitting diode (NIR-LED) light treatment protects the retina from morphologic changes resulting
from methanol intoxication. Untreated control (A), LED control (B), methanol-intoxicated (C), and LED-treated methanol-
intoxicated (D) rats.
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NIR-LED PHOTOBIOMODULATION
ATTENUATES DIOXIN-INDUCED

DEVELOPMENTAL TOXICITY

Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) is the most
acutely toxic of a group of chemicals known collectively as
polycyclic halogenated aromatic hydrocarbons (PHAHs), and
is used as the model chemical to investigate the mechanism of
action of the larger chemical class. The PHAHs are potent de-
velopmental toxins that cause increased embryo mortality as
well as sub-lethal changes in the morphological patterning of
the skeleton and of multiple organs, including the heart and the
brain.33,34 Dioxin, acting in part through activation of a tran-
scription factor (ARNT), is known to affect the expression of a
number of genes. These genes encode for proteins that play a
role in cell-cell and cell-extracellular matrix interactions, cell
signaling, cytoskeleton-related proteins, proteins associated
with cell cycle regulation, and the homeostasis and metabolism

of many xenobiotics and hormones.35–37 Further, dioxin has
long been known to induce cellular oxidative stress and in-
crease production of free radicals.38 It is through a combination
of these mechanisms that dioxin and the PHAHs are believed
to increase the incidence of birth defects, and a variety of can-
cers and hormonally linked dysfunctions in humans and
wildlife. In addition, late embryo mortality, which is typical of
birds exposed to higher levels of dioxin, has long been hypoth-
esized to be due to cellular stress decreasing available energy
needed for the animal to peck out of the shell.39

To determine the effect of 670-nm NIR-LED light therapy
on dioxin-induced developmental toxicity, a chicken (Gallus
gallus) embryo model was employed. Domestic chickens have
been investigated as an animal model for vertebrate embryonic
development for over a century.40 The embryonic development
of chicken is well characterized anatomically, physiologically,
biochemically, and in terms of the molecular cues that control
the developmental process. Moreover, chicken embryos are

FIG. 5. Near-infrared–light-emitting diode (NIR-LED) light treatment protects the photoreceptor ultrastructure from the retino-
toxic effects of methanol intoxication. Untreated control (A), LED control (B), methanol-intoxicated (C), and LED-treated
methanol-intoxicated (D) rats.
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sensitive to many developmental toxins and are therefore an
ideal laboratory model. For this study, domestic chicken eggs
were divided into the following treatment groups: no-inject,
sunflower oil vehicle, and 2,20,200 ppt dioxin. All of these
groups contained untreated control eggs and 670-nm NIR-LED
light–treated eggs resulting in an energy density of 4 J/cm2 at
24-h intervals. Results from these experiments indicate that
daily light treatment throughout embryonic development is not
detrimental to the health of the embryo.41 Further, daily NIR-
LED light treatment reduced dioxin-induced mortality of chick
embryos by 40% as well as the incubation time before the em-
bryo start to hatch (initial pip time).42,43 Thus, NIR-LED light
treatment obviates at least some of the adverse developmental
impacts of a model xenobiotic.

CONCLUSION

Experimental results demonstrate that NIR-LED light treat-
ment stimulates mitochondrial oxidative metabolism in vitro,
and accelerates cell and tissue repair in vivo. NIR-LED light
represents a novel, noninvasive, therapeutic intervention for
the treatment of numerous diseases linked to mitochondrial
dysfunction, including age-related macular degeneration,
Leber’s hereditary optic neuropathy, and Parkinson’s and Alz-
heimer’s disease.
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